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Abstract

In [Trans. Am. Math. Soc. 230 (1977) 235], Rawnsley studies a strongly integrable subtangent
bundle F on a smooth manifold M which contains the generators of a free circle action on M and
a line bundle L → M with a flat F -connection ∇. It is proved that the cohomology groups of the
sheaf SF of sections of L which are covariantly constant along F can be injectively mapped in the
cohomology groups of the restriction of SF on the Bohr–Sommerfeld set Y of the action on M . In
the present paper, we discuss similar results for free torus actions as well as some consequences in
the context of the geometric quantization of a symplectic manifold with a Hamiltonian action of a
torus T k . © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let M be a smooth manifold and F a strongly integrable sub-bundle of TMC. Let L → M

be a line bundle with a flat, Hermitian F -connection ∇ and SF be the sheaf of germs of local
sections of L, which are covariantly constant along F . Then the cohomology H ∗(M,SF )

can be identified with the de Rham cohomology of a complex of differential forms on F

with values in L. Assume that the circle T 1 acts freely on M and that all infinitesimal
generators are sections of F . The Bohr–Sommerfeld set Y of the action is the subset of M

consisting of all points with the property that ∇ has trivial holonomy along the orbit of
each of these points. Therefore Y can be given as the inverse image l−1(1), where l is the
function l : M → T 1, which measures the holonomy along the orbits of T 1. If 1 is a regular
value of l then Y is a smooth submanifold of M with the property that F is tangent to Y .
Furthermore, the line bundle with the connection restricts to Y and the cohomology groups

0393-0440/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 3 9 3 -0 4 40 (00 )00075 -9



G. Terizakis / Journal of Geometry and Physics 39 (2001) 62–80 63

of the restriction of SF on Y can be calculated using the same de Rham theorem. In [8], a
map Ĵ : Hp(M,SF ) → Hp−1(Y,SF ) is defined for p ≥ 1 by averaging parallel transport
of differential forms and then contracting by an infinitesimal generator of the action which
has period one. It is then proved (Theorem 5 in [8]) that Hp(M,SF ) = {0} and that Ĵ

is an isomorphism for p = 1 and injective for p > 1. Moreover, if Z = Y/T 1 then the
push-forward of F under the orbit map defines a strongly integrable sub-bundle F̃ and
using parallel transport on L along the orbits we can define a quotient bundle on Z with
an induced flat F̃ -connection. Then a new map J̃ : Hp(M,SF ) → Hp−1(Z,S

F̃
) can be

defined which turns out to be an isomorphism for p = 1 and injective for p > 1.
In this paper, we make a similar construction for a free action of a k-dimensional torus

T k on M assuming that all the infinitesimal generators of the action are sections of F .
We define the Bohr–Sommerfeld set of the action as the subset Y of M which consists
of those T k-orbits. Then, using the ideas in [8], we define new maps Ĵ : Hp(M,SF ) →
Hp−k(Y,SF ) and J̃ : Hp(M,SF ) → Hp−k(Z,S

F̃
) for p ≥ k. Theorems 4.2 and 4.4

state that the maps Ĵ , J̃ have similar properties with their analogues in the case that k = 1,
and also Theorem 5.3 for the case of a symplectic manifold.

Although the above construction does not rely on any symplectic structure on M , it yields
interesting results in the context of geometric quantization of a symplectic manifold. Let
(M,ω) be an integral symplectic manifold, (L,∇) prequantization data andF a polarization
which contains the generators of a free, Hamiltonian action of the circle T 1 on M . One
approach to geometric quantization is to consider the cohomology groups H ∗(M,SF )

together with a Poisson subalgebra ofC∞(M)which can be “quantized” to give a Lie algebra
of operators on H ∗(M,SF ) as the quantization of (M,ω). The action of T 1 lifts to an action
on L by bundle automorphisms and therefore acts on the sheaf SF and on its cohomology.
The space Z is the union of reduced spaces at integral levels of the Hamiltonian, which
generates the action and H ∗(Z,S

F̃
) is the quantization of these reduced spaces. Therefore

the theory developed in [8] relates the quantization of (M,ω) with the quantizations of all
the integral reduced spaces.

The question of relating symplectic reduction and quantization has been studied exten-
sively in the last 20 years for Hamiltonian actions of compact, connected Lie groups. For
the definition of quantization either sheaf cohomology has been used [3,9] or the index of a
Spinc–Dirac operator, which is defined with respect to a positive almost complex structure
[2,6,7,11,12]. In the sheaf cohomological context the question has been mainly studied for
strictly positive polarizations, i.e. for Kähler manifolds in [3,9]. If for p > 0 the cohomol-
ogy groups Hp(M,O(L)), vanish and the same is true for the corresponding cohomology
groups of the induced sheaves on the reduced spaces at the integral levels of the momentum
map, then one expects to build H 0(M,O(L)) from the spaces H 0(Mf ,O(Lf )) for some
elements f in the image of the momentum map in g∗. It seems therefore interesting to study
these questions using a non-strictly positive polarization. This is what our construction does
in the case that F has at least k real directions, which are tangent to the orbits of a free
action of T k . Our result in this direction is Theorem 5.3.

In Sections 2 and 3, we explain the theory developed in [8] with some extensions which
allow us to generalize the construction to the case of a free action of a torusT k , the generators
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of which are all in F . In particular, Theorem 3.4 of Section 3 is an improved version of
Theorem 5 in [8]. In Section 4, we generalize the constructions in [8] in the case of a free
action of a torus T k with its generators in F . In particular, Theorems 4.2 and 4.4 are the
analogues of Theorems 3.4 and 3.8 in [8]. Finally, in Section 5, we apply the theory to the
geometric quantization of a symplectic manifold where we relate our results to the question
of whether symplectic reduction and geometric quantization commute (Theorem 5.3).

2. A de Rham theorem for line bundle valued forms

Let M be a smooth manifold and p : E → M a smooth vector bundle over M . We shall
denote by Γ (E) the space of smooth global sections of E. If E is the tangent bundle TM we
also use the notation U(M) for the space Γ (TM) and Ωp(M) for Γ (∧pT ∗M). If U is open
in M , we denote by U(U) the space Γ (TM|U) and by Ωp(U) the space Γ (∧pT ∗M|U).

A strongly integrable subtangent bundle F on M is a smooth sub-bundle of the complex-
ification TMC of TM which has the following properties:

1. F is involutive,
2. F + F̄ is also involutive,
3. dimC Fx ∩ F̄x is constant for all x ∈ M .

Let CF (M) be the subset of C∞(M) consisting of those smooth functions φ, with the
property that ξφ = 0 for all vector fields ξ in Γ (F). Let Ωp

F (M) be the space Γ (∧pF ∗).
We denote by

dF : Ωp
F (U) → Ω

p+1
F (U)

by setting

dFα(ξ1, . . . , ξp+1) =
p+1∑
i=1

(−1)i+1α(ξ1, . . . , ξ̂i , . . . , ξp+1)

+
∑
i<j

α([ξi, ξj ], . . . , ξ̂i , . . . , ξ̂j , . . . , ξp+1)

for ξi ∈ UF (U), i = 1, . . . , p + 1, α ∈ Ω
p
F (U). Clearly, dF ◦ dF = 0. The spaces Ω

p
F (U),

U open in M for each p, form a presheaf. Let Dp
F be the associated sheaf. This is the

sheaf of germs of local sections of ∧pF ∗. Then, for each p, dF induces a map of sheaves
dF : Dp

F → Dp+1
F .

An infinitesimal automorphism of a subtangent bundle F is a vector field ξ inU(M), such
that for all η in UF (M), the Lie bracket [ξ, η] lies in UF (M). Obviously, if F is involutive
then every vector field in UF (M) is an infinitesimal automorphism of F .

Let ξ be an infinitesimal automorphism of F and let α ∈ Ω
p
F (M). We define the Lie

derivative Lξα of α in the direction of X by setting

Lξα(ξ1, . . . , ξp) = ξα(ξ1, . . . , ξp) −
p∑

i=1

α(ξ1, . . . , [ξ, ξi], . . . , ξp) (1)
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for all ξ1, . . . , ξp in UF (M). As with ordinary forms in Ωp(M), we have Cartan’s identity
for elements in Ω

p
F (M), which reads as

Lξ = dF ◦ i(ξ) + i(ξ) ◦ dF ,

where i(ξ) : Ωp
F (L) → Ω

p−1
F (L) is the map given by contraction with the vector field ξ .

Suppose that the vector field ξ ∈ UF (M) generates the one parameter flow σt , t ∈ R. Then,
in terms of this flow the Lie derivative Lξ is given by

Lξα = d

dt

∣∣∣∣
t=0

σ−t
∗α.

For more details, we refer to [1].
Let L → M be a line bundle over M and F a subtangent bundle on M . A partial

F-connection on L is a linear map

∇ : Γ (L) → Γ (L ⊗ F ∗),

which satisfies the Leibniz rule, i.e. ∀φ ∈ C∞(M) and ∀s ∈ Γ (L),

∇(φs) = φ∇s + dFφ ⊗ s.

If ξ is a vector field in UF (M), we use the usual notation ∇ξ s for (∇s)(ξ). We also write
S0
F (L) instead of Γ (L) and similarly we denote by S

p
F (L) the space Γ (L ⊗ ∧pF ∗) for

p = 1, 2, . . .. Since F is involutive, we can use the F -connection ∇ to define maps

∂F : Sp
F (L) → S

p+1
F (L)

by setting

∂F α(ξ1, . . . , ξp+1) =
p+1∑
i=1

(−1)i+1∇ξi α(ξ1, . . . , ξ̂i , . . . , ξp+1)

×
∑
i<j

(−1)i+jα([ξi, ξj ], ξ1, . . . , ξ̂i , . . . , ξ̂j , . . . , ξp+1) (2)

for all α ∈ S
p
F (L) and ξi ∈ UF (M), i = 1, . . . , p, where with the notation ξ̂1, we mean that

we omit ξi . It is straightforward to check that for α ∈ S
p
F (L),

∂F ◦ ∂F α = ω ∧ α,

where ω is the curvature of ∇, i.e. ω ∈ Λ2F ∗ and satisfies the equation

([∇ξ ,∇η] − ∇[ξ,η])s = ω(ξ, η)s

for all ξ, η ∈ UF (M). It follows that ∂F ◦ ∂F = 0 if and only if ω = 0, i.e. if and only if ∇
is flat. In what follows we shall often use ∂F to denote ∇ for p = 0.

Assume now that F is a strongly integrable subtangent bundle on M and ∇ is a flat
F -connection on the line bundle L → M . For an open set U in M , we consider the spaces
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S
p
F (L|U), and the maps ∂F : S

p
F (L|U) → S

p+1
F (L|U) for U open in M , p = 0, 1, . . . .

These spaces form a presheaf for each p and ∂F maps of presheaves. We denote by Sp
F (L)

the associated sheaf (for each p) and by ∂F : Sp
F (L) → Sp+1

F (L) the associated map of
sheaves. In particular, S0

F (L) is the sheaf of germs of local sections of L. Obviously, Sp
F (L)

is isomorphic to S0
F (L)⊗Dp

F . LetSF be the sheaf of those local sections, which are constant
along F -directions. Then SF = Ker(∂F : S0

F (L) → S1
F (L)). Let SF be the space of global

sections of SF . Obviously, SF = Ker(∂F : S0
F (L) → S1

F (L)). We state a de Rham theorem
which calculates the cohomology of SF in terms of the forms S

p
F (L).

Theorem 2.1 (Rawnsley [8]). Let F be an involutive, strongly integrable subtangent bundle
on M, L → M a line bundle over M and ∇ a flat F-connection on L. Then the sequence

0 → SF ↪→ S0
F (L)

∂F

→S1
F (L)

∂F

→ · · · ∂F

→Sn
F

∂F

→0 (3)

is a fine resolution of SF . This gives rise to isomorphisms between Hi(M,SF ) and the
corresponding cohomology groups of the complex of L-valued differential forms

0 → S0
F (L)

∇→S1
F (L)

∂F

→ · · · ∂F

→Sn
F (L)

∂F

→0. (4)

The proof is a standard argument proving that a long sequence of sheaves is exact. For the
complete argument, we refer to the proofs of Theorem 3 and Corollary 2 in [8]. Theorem 2.1
is quite important for our discussion, because we shall define maps between cohomology
groups by defining maps between closed differential forms with values in L.

Let ξ be an infinitesimal automorphism of F and let α ∈ S
p
F (L). We define the Lie

derivative Lξα of α in the direction of ξ by setting

Lξα(ξ1, . . . , ξp) = ∇ξα(ξ1, . . . , ξp) −
p∑

i=1

α(ξ1, . . . , [X, ξi], . . . , ξp) (5)

for all ξ1, . . . , ξp in UF (M). Cartan’s identity for differential forms in Ω
p
F (L) now becomes

Lξ = ∂F ◦ i(ξ) + i(ξ) ◦ ∂F ,

where i(ξ) : S
p
F (L) → S

p−1
F (L) is the map given by contraction with the vector field

ξ . Assume, as before, that the vector field ξ ∈ UF (M) generates the one parameter flow
σt , t ∈ R. It turns out again that we can express the Lie derivative Lξ in terms of this flow
as follows. For x ∈ M and t ∈ R, we define the map Px,t : Lσt (x) → Lx given by parallel
transport along the curve γx,t : [0, t] → M , where for s ∈ [0, t], γx,t (s) = σt−s(x). We
can now define the map

Σt : Sp
F (L) → S

p
F (L)

by setting

(Σtα)x(ξ1, . . . , ξp) = Px,t (ασt (x)(σt∗ξ1, . . . , σt∗ξp)) (6)
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for x ∈ M , ξ1, . . . , ξp ∈ Fx . It is straightforward to check that for t, s ∈ R
Σt+s = Σt ◦ Σs. (7)

Assuming that t is small enough, we can write α in local coordinates and use the formula
for the parallel transport in Lemma 1.9.1 in [4]. Then one can prove that

Lξα = d

dt

∣∣∣∣
t=0

Σ−t α. (8)

3. The Bohr–Sommerfeld set of a periodic flow with generator in a subtangent
bundle

Let F be an involutive, strongly integrable subtangent bundle on a smooth manifold M

and let L → M be a line bundle over M with a flat F -connection ∇. Assume also that there
is a Hermitian structure on L which is compatible with ∇. Let ξ be a vector field in UF (M)

and assume that it generates a periodic flow σt , t ∈ Rwith period one, i.e. σt = σ1+t for all
t ∈ R. We assume that the flow does not have any fixed points. Alternatively, we can think of
this flow as a free smooth action τ of the circle T 1 on M , with ξ as an infinitesimal generator
of the action, which lies in F and its flow has period one. Let ξ̂ be the element in t1 such
that ξ = σ̇ (ξ̂ ) and exp : t1 → T 1 the exponential map. Then for t ∈ [0, 1], σt = τexp t ξ̂

.

Let α ∈ S
p
F (L). Since the flow σt is periodic, the map Σt constructed in the previous

section will have the property that

(Σ1α)x = l(x)αx

for x ∈ M , where l(x) ∈ T 1 since ∇ is Hermitian. In this way we get a function

l : M → T 1,

which is obviously invariant under the flow σt . For an arbitrary point x ∈ M , l(x) may not
be equal to 1. This means that the lifting of the one parameter flow on the bundle by parallel
transport may not be periodic and therefore it may not give a lifting of the action of T 1 on
L by bundle transformations. Comparing Σ1α with α, we find that

Σ1α − α = Σ1α − Σ0α =
∫ 1

0

d

ds
Σsα ds =

∫ 1

0

d

dt

∣∣∣∣
t=0

Σs+t α ds

=
∫ 1

0
Σs

d

dt

∣∣∣∣
t=0

Σs+t α ds =
∫ 1

0
Σs(−Lξα) ds = −Lξ

∫ 1

0
Σsα ds, (9)

where we have used (7) and (8) and the fact that

Lξ ◦ Σs = Σs ◦ Lξ ,

which follows directly from the definitions. We define the map

I : Sp
F (L) → S

p
F (L)
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by setting

Iα =
∫ 1

0
Σsα ds

for α ∈ S
p
F (L). From the definition of Σt it is straightforward to check that Σt commutes

with ∂F , therefore so does I . Using this property as well as Cartan’s identity for the Lie
derivative and the definition of the map I , we can rewrite (9) as

Σ0α − Σ1α = Lξ ◦ Iα = ∂F ◦ i(ξ) ◦ Iα + i(ξ) ◦ ∂F ◦ Iα

= ∂F ◦ i(ξ) ◦ Iα + i(ξ) ◦ I ◦ ∂F α. (10)

We define J : Sp
F (L) → S

p−1
F (L) to be the composition

J = i(ξ) ◦ I.

Since Σ0α − Σ1α = (1 − l)α, (10) implies that J satisfies the equation

(1 − l)α = ∂F ◦ Jα + J ◦ ∂F α (11)

for all α ∈ S
p
F (L) and p ≥ 1. For p = 0, Cartan’s identity reads as

Lξα = i(ξ) ◦ ∂F α,

therefore (10) becomes

(1 − l)α = J ◦ ∂F α (12)

for α ∈ S0
F (L). Now we are able to study in more detail the properties of the function l.

Lemma 3.1 (Rawnsley [8]). l ∈ CF (M).

Proof. Let s ∈ S0
F (L). Then

(1 − l)s = J ◦ ∂F s ⇒ (1 − l)∂F s − dF l ⊗ s = ∂F ◦ J ◦ ∂F s.

On the other hand, ∂F s ∈ S1
F (L), therefore (13) gives

∂F ◦ J ◦ ∂F s = (1 − l)∂F s.

It follows that dF l ⊗ s = 0 for all s ∈ S0
F (L), therefore dF l = 0. �

In the case that the curvature of ∇ is the restriction of a symplectic form on M , we shall
give in a later section a different proof of this fact.

The set l−1(1) consists of those orbits along which the holonomy of the connection ∇
is trivial. We set Y := l−1(1) and we shall call Y the Bohr–Sommerfeld set of the flow σt

(or of the free action of the circle T 1 on M). In general we do not know what this set looks
like. However, the “size” of Y can give information about the space SF (or H 0(M,SF )) of
global sections of the sheaf SF .

Lemma 3.2. Assume that the complement of Y in M is dense in M. Then SF = {0}.
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Proof. Let s ∈ SF . Then ∂F s = 0, therefore 0 = J ◦ ∂F s = (1 − l)s, i.e. s = 0 on M −Y .
Since this set is dense by assumption and s is continuous, s must be identically zero. �

This result does not need Y to be a smooth, or even a topological manifold. If we assume,
however, that 1 is a regular value of l then Y is a smooth submanifold of M of codimension
one and in this case Y can also give information about the behaviour of the global sections
of a vector bundle E → M near Y . More precisely, we have the following theorem.

Theorem 3.3 (Rawnsley [8]). Suppose that 1 is a regular value of l. Then a smooth section
s of L vanishes on Y if and only if there exists a smooth section r of L such that s = (1 − l)r .

The proof is analogous to that of the Schwartz lemma for smooth functions, which vanish
on the zero set of a function and we refer the reader to Theorem 4 in [8] for a full proof.

From now on we shall always assume that 1 is a regular value of l. Since l ∈ CF (M),
F is also a subtangent bundle on Y and therefore it is an involutive and strongly integrable
sub-bundle of TYC. Let L|Y be the restriction of L on Y with the restricted connection,
denoted again by ∇. Since F is tangent to Y , the restriction of SF on Y is isomorphic to
the sheaf of germs of local sections of L|Y , which are covariantly constant along F . This
will also be denoted by SF . From the connection ∇ on L|Y , we can construct operators
∂F : Sp

F ((L|Y )|U) → S
p+1
F ((L|Y )|U) for all open sets U of Y and p ≥ 1. This spaces form

presheaves and ∂F are homomorphisms of presheaves. Therefore, we get an associated
complex of sheaves, which is a resolution of SF on Y by soft sheaves, therefore by Theorem
2.1, the cohomology groups Hp(Y,SF ) can be identified with the cohomology groups of
the complex of L|Y -valued F -differential forms on Y .

The map J : Sp
F (L) → S

p−1
F (L) does not in general induce a map Ĵ : Hp(M,SF ) →

Hp−1(M,SF ), since it does not commute with ∂F . This obstruction is given by the left-hand
side of (11). However, this vanishes on Y , so there is a well defined map

Ĵ : Hp(M,SF ) → Hp−1(Y,SF ),

given by

Ĵ ([α]) − [Jα|Y ]

for α ∈ S
p
F (L). The following theorem states a fundamental property of Ĵ and it is an

improved version of Theorem 5 in [8].

Theorem 3.4. Assume that Hp(M,SF ) = {0} for 0 ≤ p < p0 and that Hp0(M,SF ) �=
{0}. Then Ĵ : Hp(M,SF ) → Hp−1(Y,SF ) is an isomorphism for 1 ≤ p ≤ p0 and
injective for p > p0.

Proof. We prove first that Ĵ is an isomorphism for p = 1. Let α be a closed form in S1
F (L)

such that Jα|Y = 0. Then from Theorem 3.3, we can write Jα = (1 − l)s for some smooth
section s of L and ∂F ◦ Jα = (1 − l)∂F s. Therefore (1 − l)α = (1 − l)∂F s, which means
that [α] = 0 and Ĵ is injective for p = 1. Assume now that s is a global section of L|Y such
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that ∂F s = 0. Since Y is a closed submanifold of M , we can extend s to a global section s1

of L. Then ∂F s1|Y = 0, therefore by Theorem 3.3 ∂F s1 = (1 − l)α for some α in S1
F (L).

Then (1 − l)Jα = J ◦ ∂F s1 = (1 − l)s1, therefore Jα = s1 and Jα|Y = s. Therefore Ĵ is
surjective for p = 1.

Let now α be a closed form in S
p
F (L) for p ≥ 2 and assume that Ĵ [α] = 0. Then

Jα|Y = ∂F β for some β in S
p−2
F (L|Y ). Let β1 be in S

p−2
F (L) such that β1|Y = β. Then

Jα − ∂F β1 vanishes on Y , therefore we can write Jα − ∂F β1 = (1 − l)γ for some γ in
S
p−1
F (L). Since α is closed (11) gives (1 − l)α = ∂F Jα = (1 − l)∂F γ , which implies that

α = ∂F γ , i.e. [α] = 0. Therefore Ĵ is injective.
If p0 = 1 then the theorem is proved. If p0 ≥ 2 it remains to prove that Ĵ is surjective

for 1 ≤ p ≤ p0. Suppose 1 ≤ p ≤ p0. Let [β] ∈ Hp−1(Y,SF ), where β ∈ S
p−1
F (L|Y )

and satisfies ∂F β = 0. We extend β to β̃ ∈ S
p−1
F (L). Then

(∂F β̃)|Y = ∂F (β̃|Y ) = ∂F β = 0.

By Theorem 3.3, ∂F β̃ = (1 − l)α for some α ∈ S
p
F (L). Therefore

J ◦ ∂F β̃ = J (1 − l)α = (1 − l)Jα.

On the other hand,J ◦∂F β̃ = (1−l)β̃−∂F ◦J β̃, which implies that ∂F ◦J β̃|Y = 0, therefore
∂F ◦ J β̃ = (1 − l)γ̃ for some γ̃ ∈ S

p−1
F (L). Moreover, 0 = ∂F ◦ ∂F ◦ J β̃ = (1 − l)∂F γ̃ ,

hence γ̃ is ∂F -closed. SinceHp(M,SF ) = {0} for 1 ≤ p ≤ p0 by assumption, we conclude
that either γ̃ = 0 for p = 1 by Lemma 3.2, or by Theorem 2.1 that γ̃ is ∂F -exact if p > 1,
i.e. γ̃ = ∂F γ̃1 for some γ̃1 ∈ S

p−2
F (L). In the first case it follows that

(1 − l)Jα = (1 − l)β̃ ⇒ Jα = β̃ ⇒ Ĵ [α] = [β̃|Y ] = [β].

In the second case, we have that

(1 − l)Jα = (1 − l)β̃ − (1 − l)∂F γ̃1 ⇒ Jα = β̃ − ∂F γ̃1,

i.e.,

Ĵ [α] = [(β̃ − ∂F γ̃1)|Y ] = [β − ∂F (γ̃1|Y )] = [β].

An obvious but quite useful corollary of the above arguments is the following. �

Corollary 3.5. Let p1 be the smallest positive integer such that Hp1(Y,SF ) is not zero.
Then p0 ≥ p1 + 1, where p0 is as in Theorem 3.4.

The action of T 1 defined by the flow σt is proper since T 1 is compact and free by
assumption. It also preserves Y , since l is T 1-invariant. Let Z be the quotient Y/T 1 and
π : Y → Z the orbit map. Our assumptions guarantee that Z is a smooth manifold and
π a smooth submersion (see, for example, Proposition 4.1.23 in [1]). The action τ on M

induces an action τ̃ on TM defined by τ̃g · (x, ηx) = (τg · x, τg∗ηx) for g ∈ T 1, x ∈ M ,
ηx ∈ TxM . By extending this complex linearly, we can define an action on TMC. Since
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ξ ∈ Γ (F), this action preserves F , so we can define F̃ as the quotient F |Y /T 1. This is a
subtangent bundle on Z. We shall assume that F̃ is involutive and strongly integrable.

In Section 7 of [8] the author describes how the line bundle p : L → M with the
F -connection ∇ induces a line bundle p̃ : L̃ → Z and an F -connection ∇̃, such that

π∗L̃ � L|Y , π∗∇̃ = ∇|Y .

We recall briefly the construction. We define the equivalence relation ∼ on L as follows.
Let p1, p2 ∈ M , x1 = π(p1) and x2 = π(p2). Then p1 ∼ p2 if and only if there exists
a g ∈ T 1 such that x2 = g · x1 and p2 is obtained by parallel transport along the curve
γ : [0, t] → M given by γ (s) = τexp(ξ̂ s)(x1), where exp(ξ̂ t) = g. Although L/ ∼ does

not define a line bundle over M/T 1, L̃ := L|Y / ∼ can be given a structure of a line bundle
over Z with the property π∗L̃ � L|Y . This is because we can trivialize the bundle L|Y over
a collection of T 1 invariant open sets U ⊂ Y , which cover Y . Moreover, we can choose
local sections sU of this trivialization to satisfy ∇sU = 0, which induce local sections s̃V

of L̃ → Z, where U = π−1(V ). We can define now a connection ∇̃ on L̃ by requiring that
∇̃ s̃V = 0.

We define now maps ∂F̃ : Sp

F̃
(L̃) → S

p+1
F̃

(L̃) for p ≥ 1. We define S̃
p
F (L) as the subset

of S
p
F (L|Y ) given by the pull-back S̃

p
F (L) = π∗Sp

F̃
(L̃). The following proposition gives a

more explicit characterization of S̃p
F (L).

Proposition 3.6 (Rawnsley [8]). Let α ∈ S
p
F (L|Y ). Then α ∈ S̃

p
F (L), if and only if i(ξ)α =

0 and Lξα = 0.

For a proof, we refer to the proofs of Propositions 3 and 4 in Section 7 of [8]. Using this
proposition together with Cartan’s identity we can easily deduce the following corollary.

Corollary 3.7 (Rawnsley [8]). ∂F S̃
p
F (L) ⊂ S̃

p+1
F (L).

Therefore, the spaces S̃
p
F (L), p = 0, 1, . . ., together with the maps ∂F form a complex

0 → S̃
p
F (L)

∂F

→S̃
p
F (L)

∂F

→ · · · ∂F

→S̃
p
F (L)

∂F

→0,

which is called the complex of basic forms on Y . Let H̃ p(Y,SF ) be the cohomology of this
complex. There is a natural map

k : H̃ p(Y,SF ) → Hp(Y,SF ),

which maps the class in H̃ p(Y,SF ) of a form α in S̃
p
F (L) to the class of the same form in

Hp(Y,SF ). If α ∈ S̃
p
F (L) ⊂ S

p
F (L|Y ) and α = ∂F γ for some γ ∈ S

p−1
F (L|Y ), then γ may

not be an element of S̃p−1
F (L). This implies that neither k need to be injective nor surjective.

However, k is an isomorphism in degree 0. Moreover, it is obvious from the definitions that
H̃ p(Y,SF ) is isomorphic to Hp(Z,S

F̃
).
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Let α ∈ S
p
F (L). Then

i(ξ)(Jα|Y ) = (i(ξ)Jα)|Y = (i(ξ)i(ξ)Iα)|Y = 0.

Moreover,

Lξ Jα = ∂F i(ξ)Jα + i(ξ)∂F Jα

= i(ξ)∂F Jα = i(ξ)((1 − l)α − J∂Fα) = (1 − l)i(ξ)α,

therefore

Lξ (Jα)|Y = (Lξ Jα)|Y = 0.

Now Proposition 3.6 implies that Jα|Y ∈ S̃
p−1
F (L). It follows that we can write Ĵ as the

composition Ĵ = k ◦ J̃ , where

J̃ : Hp(M,SF ) → Hp−1(Z,S
F̃
),

where for α ∈ S
p
F |Y (L),

J̃ [α] = [(Jα)|Y ] ∈ H̃ p(Y,SF ) � Hp(Z,S
F̃
).

The map J̃ is injective since Ĵ is injective. For p = 1, since k, Ĵ are isomorphisms so is J̃ .
As a conclusion, we have the following theorem proved in [8] (Theorem 6).

Theorem 3.8. The map J̃ : Hp(M,SF ) → Hp−1(Z,S
F̃
) is an isomorphism for p = 1

and injective for p > 1.

Theorem 3.8 suggests that the cohomology of the induced sheaf S
F̃

on the quotient Z
contains all the information that the cohomology of SF can give.

Remark. An analogue of Theorem 3.4 does not seem to hold for J̃ . The reason is that
Hp(Z,S

F̃
) is not isomorphic to Hp(Y,SF ), but it is only related to it via the map k, the

behaviour of which we do not know in general.

4. Generalization for a kkk-dimensional torus T kT kT k

In this section, we generalize the theory developed in Section 3 for free circle actions to the
case of a free action of a k-dimensional torusT k onM . Theorems 3.4 and 3.8 generalize The-
orems 3.4 and 3.8 of the previous section for free actions of a k-dimensional torus T k on M .

We assume that M carries all the structure it has been given at the beginning of Section 3
and that we have a smooth and free action of the torus T k on M . For this action we assume
that all its infinitesimal generators are sections of F . We choose k subgroups T1, . . . , Tk of
T k , each of which is isomorphic to T 1 and so that the homotopy classes [Ti] ∈ π1(T

k), i =
1, . . . , k form an Z-basis of π1(T

k). Then T k is isomorphic to T1 ×· · ·×Tk . Choose a cor-
responding basis ξ̂1, . . . , ξ̂k of the Lie algebra tk of T k , i.e. ξ̂i generates Ti , and {ξ̂1, . . . , ξ̂k}
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is an Z-basis for the kernel of the exponential map exp : tk → T k . Let ξ1, . . . , ξk be the
infinitesimal generators of the action of T k corresponding to ξ̂1, . . . , ξ̂k , respectively. Since
the action is free the flows σ

(i)
t of ξi, i = 1, . . . , k are periodic with period one. Each of the

groups Ti, i = 1, . . . , k of T k acts freely on M and the generator of its action is in F , so
we can construct a function li : M → T 1 as in the previous section, measuring the parallel
transport along Ti-orbits.

Lemma 4.1. The functions li , i = 1, . . . , k are T k-invariant.

Proof. By Lemma 3.1, li is in CF (M) for i = 1, . . . , k. Since the infinitesimal generators
of the action of T k are all in F , we have that ξj li = 0 for i, j = 1, . . . , k. Therefore, li
is invariant under the flow σ

(j)
t for i, j = 1, . . . , k. Let now g ∈ T k . We need to show

that li (g · x) = li (x) for all x ∈ M . Since the action is free we can choose t1, . . . , tk such
that g · x = σ

(1)
t1

◦ · · · ◦ σ
(k)
tk

(x). Since li is invariant under each of σ
(j)
t it follows that

li (g · x) = li (x). �

We denote by Yi the Bohr–Sommerfeld set of the action of Ti, i = 1, . . . , k. Assume that
1 is a regular value of l1. Then Y1 is a closed submanifold of M of codimension one. We
can make all the constructions of the previous section on Y1 instead of Y . We denote by L1

be the bundle L|Y1 and for simplicity we still denote by ∇ the connection ∇|Y1 and SF and
by SF the sheaf SF |Yi

. Let p0 be the smallest integer such that Hp0(M,SF ) �= {0}. From
Section 3, we know that p0 ≥ 1.

Since l1 is T k-invariant, T k acts freely on Y1 therefore so does each of the subgroups
Tj , j = 1, . . . , k and in particular T2. Let Y12 be the Bohr–Sommerfeld set of the action
of T 1

2 on Y1. Obviously, Y12 = Y1 ∩ Y2. We also denote by SF the sheaf SF |Y12 . If 1 is a
regular value of the map l2|Y1 then Y12 is a closed submanifold of Y1, and of codimension
one. In this case F is also tangent to Y12 and we can consider the line bundle L12 � L|Y12 ,
the F -connection ∇|Y12 and the sheaf SF |Y12 again denoted by ∇ and SF , respectively. To
keep our notation simple we shall also denote by J the map

J : Sp
F (L1) → S

p−1
F (L1)

constructed in the previous section by first averaging the parallel transport between points
on a T2-orbit and then contracting by ξ2. This induces a map

Ĵ : Hp(Y1,SF ) → Hp−1(Y12,SF )

for p ≥ 1. Let p1 be the smallest integer for which Hp1(Y1,SF ) �= {0}. By Lemma 3.2,
p1 ≥ 1 and the map Ĵ : Hp(Y1,SF ) → Hp−1(Y12,SF ) is an isomorphism for 0 ≤ p ≤ p1

and injective for p > p1. Moreover,

H 1(M,SF ) � H 0(Y1,SF ) = {0},

i.e. p0 ≥ p1 + 1 ≥ p2 + 2. It is obvious now how we can continue. Suppose that 1 ≤
m < k. Let Y1,...,m = Y1 ∩ · · · ∩ Ym. Then F is a strongly integrable subtangent bundle on
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Y1,...,m. We denote by L1,...,m the restriction of L on Y1,...,m with the induced F -connection
and sheaf denoted by ∇ and SF , respectively. The group Tm+1 acts freely on Y1,...,m and
the Bohr–Sommerfeld set for this action is Y1,...,m+1. Assume that 1 is a regular value of
lj+1|Y1,...,j for j = 1, . . . , m. Then Y1,...,m+1 is a closed submanifold of Y1,...,m of codimen-

sion one. We denote again by J the map J : Sp
F (L1,...,m) → S

p−1
F (L1,...,m) constructed as

in the previous section and Ĵ the corresponding map in cohomology

Ĵ : Hp(Y1,...,m,SF ) → Hp−1(Y1,...m+1,SF )

for which Theorem 3.4 says that it is an isomorphism for p ≤ pm+1 and injective for
p ≥ pm+1, where pm+1 is the smallest integer for which the cohomology Hp(Y1,...,m,SF )

is not trivial. Repeated applications of Lemma 3.2 and Theorem 3.4 give that

Hm−1(M,SF ) � Hm−2(Y1,SF ) � · · · � H 0(Y1,...,m,SF ) � {0},
which shows that

p0 ≥ p1 + 1 ≥ p2 + 2 ≥ · · · ≥ pm + m ≥ m. (13)

We define the map

Ĵ1,...,m : Hp(M,SF ) → Hp−m(Y1,...,m,SF ),

to be the composition

Hp(M,SF ) → Hp−1(Y1,SF ) → · · · → Hp−m(Y1,...,m,SF ),

where all arrows denote the corresponding maps Ĵ . Form = k, we get the following theorem
as an easy consequence of Theorem 3.4 and Corollary 3.5.

Theorem 4.2. Assume that 1 is a regular value of l1 and of lr+1|Y1,...,r for r = 1, . . . , k.

Then the map Ĵ : Hp(M,SF ) → Hp−k(Y,SF ) is an isomorphism for 1 ≤ p ≤ p0 and
injective for p > p0, where p0 ≥ k.

Let Y = Y1 ∩ · · · ∩ Yk . We shall call Y the Bohr–Sommerfeld set of the action of T k on
M . Consider the map

l : M → T k,

given by l(x) = (l1(x), . . . , lk(x)) for x ∈ M , where we identify T k with T 1 × · · ·×T 1. It
is easy to see that Y = l−1(1) and the assumptions of Theorem 4.2 guarantee that 1 ∈ T k

is a regular value of l. In this sense Theorem 4.2 generalizes Theorem 5 in [8] but our
assumptions now are stronger than those of Theorem 5 in [8].

We note that we can also give Ĵ directly in terms of differential forms as follows. For
each p > 0, let Ji : S

p
F (L) → S

p−1
F (L) be defined as in Section 3 using the action

of Ti . We define J : S
p
F (L) → S

p−k
F (L) to be the composition J = J1 ◦ · · · ◦ Jk . Let

α be a closed differential form in S
p
F (L). We shall show that Jα|Y is also closed. Since

Jkα|Yk
is closed in Yk , the form (Jk−1 ◦ Jkα)|Yk−1∩Yk

, is also closed in Yk−1 ∩ Yk . By
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iterating this argument we can finally prove that Jα|Y is closed. Obviously, the induced
map Ĵ : Hp(M,SF ) → Hp−k(Y,SF ) is the map J1,...,k in Theorem 4.2. We can give
the map J explicitly as follows. We denote by σt1,...,tk the composition σ

(1)
t1

◦ · · · ◦ σ
(k)
tk

,

where σ
(i)
ti

is the flow of ξi for i = 1, . . . , k. Let α be a form in S
p
F (L) for p ≥ k and let

X1, . . . , Xp−k be vectors in Fx for some x ∈ M . Since the vector fields ξi are T k-invariant
it easily follows from the definition of J that

(Jα)x(X1, . . . , Xp−k)

=
∫ 1

0
· · ·

∫ 1

0
α(ξ1, . . . , ξp−k, (σt1,...,tk )∗X1, . . . , (σt1,...,tk )∗Xp−k) dt1, . . . , dtk,

where the form α inside the integral is evaluated at σt1,...,tk (x). This is an integral over the
orbit T k · x and the choice of the basis ξ̂1, . . . , ξ̂k for its Lie algebra gives us a choice of a
volume form on it. Moreover, as in the case of the circle action, we can prove the following
lemma.

Lemma 4.3. Let α be a form in S
p
F (L) for p ≥ k. Then the form Jα|Y is basic, in the sense

that for all infinitesimal generators ξ , we have i(ξ)Jα|Y = 0 and Lξ Jα|Y = 0.

Proof. It suffices to show this for the infinitesimal generators ξ1, . . . , ξ1 since we can write
any infinitesimal generator ξ as a linear combination of them. From the definition of J it
easily follows that i(ξi)Jα|Y = 0 for all i = 1, . . . , k. Then from Cartan’s identity, we get
that Lξi Jα = i(ξi)∂

F Jα. Using the equations ∂F Ji + Ji∂
F = (1 − li )id for i = 1, . . . , k,

we find that

∂F Jα + (−1)k+1J∂Fα =
k∑

i=1

(−1)i(1 − li )(J1 ◦ · · · ◦ Ji−1 ◦ Ji+1 ◦ · · · ◦ Jk)α.

(14)

Since li = 1 on Y for i = 1, . . . , k, we get that Lξi Jα|Y = (−1)ki(ξi)Jα|Y = 0. �

Assume that the identity in T k is a regular value for l : M → T k . Then Y is a smooth
submanifold of M of codimension k. Let Z = Y/T k and τ : Y → Z be the orbit map. This
is a smooth submersion. We can complexify the tangent bundle of Z so that the extension
of τ∗ to TYC is complex linear. Then the vector bundle F̃ = τ∗F is a strongly integrable
subtangent bundle on Z. We define an equivalence relation ∼ on the bundle L by letting two
points on the bundle be equivalent if and only if they lie on the same T k-orbit and we can
get one of them by parallel transport of the other along a curve which lies entirely on this
orbit. Since the T k-orbits on Y are absolutely parallel submanifolds we can give the quotient
L̃ = L/ ∼ the structure of a line bundle over Z with a connection ∇̃ such that L = τ ∗L̃ and
∇ = τ ∗∇̃. We do not give more details of this construction since it is completely analogous
to that in Section 7 of [8] for circle actions. In precisely the same way one can also show
that a form in S

p
F (L|Y ) is the pull-back of a form in S

p

F̃
(L̃) if and only if it is basic. This

implies that Hp(Z,S
F̃
) is isomorphic to the de Rham cohomology of the complex of basic
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L-valued differential forms S̃
p
F (L|Y ). Let us denote this de Rham cohomology of basic

forms by H̃ p(Y,SF ). As in Section 3, we can define a map k : H̃ p(Y,SF ) → Hp(Y,SF ),
which maps the class of a basic p-form α in H̃ p(Y,SF ) to its class in Hp(Y,SF ). Although
we do not know the behaviour of k for an arbitrary degree p, we can easily see that k is the
identity map for p = 0.

Let α be a closed form in S
p
F (L). By Lemma 4.3, the form Jα|Y is a closed, basic

(p − k)-form on Y therefore it defines a class in Hp−k(Z,S
F̃
). This assignment defines

a map J̃ : Hp(M,SF ) → Hp−k(Z,S
F̃
) for which we have Ĵ = k ◦ J̃ (where we have

identified Hp−k(Z,S
F̃
) with H̃ p−k(Y,SF )). Now the fact that k is an isomorphism for

p = 0 together with Theorem 4.2 imply the following theorem.

Theorem 4.4. Assume that 1 ∈ T 1 is a regular value of l1 and of lm+1|Y1,...,m for m =
1, . . . , k−1. Then the map J̃ : Hp(M,SF ) → Hp−k(Z,S

F̃
) is an isomorphism for p = k

and injective for p > k. Moreover, Hp(M,SF ) = {0} for 0 ≤ p ≤ k − 1.

5. The symplectic case

In this section, we shall use the results of the previous sections in the context of geometric
quantization of a symplectic manifold.

Let (M,ω) be a symplectic manifold and assume that the de Rham class of ω is in the
image of the natural map H 2(M,Z) → H 2(M,R) induced by the inclusion of Z in R. By
the theory of prequantization (see [4]), we know that there exists a line bundle L → M over
M , a connection ∇̃ on L with curvature equal to −2π iω and a Hermitian structure h on L

compatible with ∇̃. We fix such a set of prequantum data (L, ∇̃, h). Let F be a polarization
on M . Then F is a Lagrangian, strongly integrable subtangent bundle on M . Considering
covariant differentiation with respect to ∇̃ only at directions in F , we get an F -connection
∇ with curvature equal to −2π iω|F . Since F is Lagrangian, ∇ is a flat F -connection on L.

Suppose now that σ is a smooth, free action of the circle T 1 on M . Choose ξ̂ ∈ t1 � iR
so that {nξ̂ , n ∈ Z} is the kernel of the exponential map exp : t1 → T 1. The flow of the
corresponding infinitesimal generator ξ has period one and is denoted by σt . Since there is
a Hermitian structure compatible with ∇, parallel transport along T 1-orbits takes values in
T 1. Let l : M → T 1 be the function measuring parallel transport along T 1-orbits, defined
as in Section 3. Under our assumptions we can give a geometric proof of Lemma 3.1 as a
consequence of the following lemma.

Lemma 5.1. The function l is in C1(M) and its derivative is given by

dlx = 2π il
∫ 1

0
(σ ∗

t ω)(ξx, ·) dt. (15)

Proof. Let x ∈ M and γ : [0, ε] → M a smooth curve, such that γ (0) = x, γ̇ (0) = η ∈
TxM . Consider the map S̃ : [0, ε]× [0, 1] → M given by S̃(s, t) = exp(t ξ̂ ) ·γ (s), where ξ̂

is anZ-basis for the kernel of the exponential map t1 → T 1. Assuming that η, ξx are linearly
independent we can choose ε small enough, so that γ̇ (s), ξγ (s) are linearly independent for
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s ∈ [0, ε]. Then we can think of S̃ as a parameterization of a smooth surface S ⊂ M with
boundary consisting of the T 1-orbits through x, γ (ε). For r ∈ (0, ε) we denote by S(r) the
surface S̃([0, r] × [0, 1]). From Lemma 1.9.1 of [4], we get that

l(γ (r)) = l(x) e2π i
∫
S(r) ω dS

.

Using the parameterization S̃, we can write
∫
S(r)

ω dS =
∫ r

0

∫ 1

0
ω(ξ, σt∗ γ̇ (s)) dt ds,

where, as usual, ξ denotes the infinitesimal generator associated to ξ̂ . The right-hand side
is differentiable with respect to r , therefore so is the l(γ (r)). In particular, we have

d

dr

∣∣∣∣
r=0

l(γ (r)) = 2π il(x)
∫ 1

0
ω(ξx, σt∗η) dt. (16)

This formula is also valid in case that ξx, η are linearly dependent. In this case the right-hand
side is zero because σ̇ (ξ)|σt (x) and σt∗η are both in Fσt (x) and ∇ is a flat F -connection. If
ξx, η are linearly dependent, η is also an infinitesimal generator of the action so the left-hand
side is zero since l is T 1-invariant. The infinitesimal generator ξ is a T 1-invariant vector
field, i.e. it satisfies σt∗ξx = ξσt (x). Therefore, we can rewrite (16) as

dlx(η) = 2π il
∫ 1

0
(σ ∗

t ω)x(ξx, η) dt ∀η ∈ TxM. � (17)

Corollary 5.2. l ∈ CF (M).

Proof. Since ω is smooth and l ∈ C1(M), we can differentiate the right-hand side of (15)
to conclude that l ∈ C2(M). By induction, it follows that l ∈ C∞(M). Since ∇ is a flat
F -connection, for η ∈ Fx (17) gives that dlx(η) = 0. Hence, l ∈ CF (M). �

Assume that the action is symplectic. Then (15) becomes

dl = 2π ilσt
∗ω(ξ, ·).

If the action is almost Hamiltonian, then there exists a linear map µ : t1 → C∞(M), such
that for ξ̂1 ∈ t1, dµ(ξ̂1) = ω(ξ1, ·). Then, dl = 2π il dµ(ξ̂), which implies that

l = e2π i(µ(ξ̂ )+c) (18)

for some c1 ∈ R. In fact, our assumption that the infinitesimal generators of the action are
sections of F guarantees that if the action is almost Hamiltonian then it is Hamiltonian,
i.e. that the image of µ is in our case an Abelian subalgebra of C∞(M). Therefore, we can
think of µ(ξ̂)(x) + c as the value of a momentum map φ : M → t1

∗
evaluated at ξ̂ ∈ t1.

Suppose now that the torus T k acts freely and in a Hamiltonian fashion on (M,ω). Then
all values of the momentum map φ : M → (tk)∗ are regular, since the rank of the derivative
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of φ changes only at points with non-trivial stabilizer groups. We choose a basis {ξ̂1, . . . , ξ̂k}
for the kernel of the exponential map exp : tk → T k and so that the flows of the infinitesimal
generators ξ1, . . . , ξk corresponding to ξ̂1, . . . , ξ̂k have period one. We can think of the set
{ξ̂1, . . . , ξ̂k} as a basis for the lattice Λk of integral elements of tk , which is isomorphic
to π1(T

k). Each of the basis elements ξ̂i exponentiates to a circle Ti in T k and since our
connection is Hermitian, parallel transport along Ti-orbits takes values in T 1. We can form
the function li : M → T 1 as in the previous sections measuring the parallel transport
around Ti-orbits. From the discussion above it follows that we can choose a momentum
map for the action φ : M → (tk)∗, so that

li (x) = e2π iφ(x)(ξ̂i ) ∀x ∈ M, i = 1, . . . , k.

We consider now the function l : M → T k constructed as in Section 3. This depends on this
choice of basis for the lattice Λk . The Bohr–Sommerfeld set Y = l−1(1) of the action of
T k on (M,ω) is precisely the set φ−1(Λk) = ∪µ∈Λkφ−1(µ). Moreover, the set Z = Y/T k

is the union of all the reduced spaces at integral levels of φ. Since all values of l are regular,
the assumptions of Theorems 4.2 and 4.4 are satisfied. Moreover, the theory of Marsden and
Weinstein (see [5]) gives that eachZµ := φ−1(µ)/T k is a symplectic manifold for all values
µ in the image of the momentum map. Moreover, for integral µ the pull-back of the induced
line bundle on Zµ, is the restriction of L on φ−1(µ) therefore ωµ is the curvature of the
induced connection on Lµ. This means that the bundle that our construction induces on each
of the integral reduced spaces is the prequantization bundle in the theory of Kostant. If F is
a polarization of (M,ω) and dim M = 2n, then dim F = n and since F contains the tangent
space of the T k-orbits which has dimension k, the induced subtangent bundle F̃ on Z has
dimension n − k. Moreover, F̃ is isotropic since F is isotropic, therefore F̃ is Lagrangian.
It follows that F̃ is a polarization on (Zµ, ωµ). Therefore, we have the following theorem.

Theorem 5.3. Assume that the torus T k acts freely and in a Hamiltonian fashion on the
prequantizable symplectic manifold (M,ω) with momentum map φ : M → tk

∗
. Let F be

a strongly integrable polarization on (M,ω) which contains the generators of this action.
Then for each integral level set of φ, the reduced space inherits naturally (by the orbit map)
a polarization F̃ and a prequantization line bundle. Moreover, the maps Ĵ : Hp(M,SF ) →
Hp−k(Y,SF ), J̃ : Hp(M,SF ) → Hp−k(Y,S

F̃
) are isomorphisms for p = k and injective

for p > k, where Y is the union of the integral level sets of φ and Z is the union of the
corresponding reduced spaces at integral levels of φ.

6. Some applications

It is interesting to compare Theorem 5.3 with Theorem 1 (or Theorem 5.2) in [3]. In [3]
the authors consider an action of a compact Lie group G (not necessarily Abelian) and they
use a positive polarization which is preserved under the G-action on (M,ω). Theorem 5.3
states an analogous result when the polarization considered contains k real directions which
are tangent to the orbits of a torus action. We see that while using a positive polarization it is
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natural to compare cohomology groups on M with cohomology groups of the same degree
on each of the integral reduced spaces, in this paper, it seems more natural to compare
cohomology groups of different degrees, via the map J̃ .

There is an overlap of our results with those of Śniatycki concerning the geometric
quantization of a symplectic manifold using a real polarization F . In [10], Śniatycki defines
the Bohr–Sommerfeld set Y as the union of those leaves of F on which ∇ has trivial
holonomy. If these leaves of F are spanned by n commuting, complete Hamiltonian vector
fields then each of them is diffeomorphic to T p0 ×Rn−p0 for some p0 (see, for example [1,
Theorem 5.2.21]). The main result in [10] is that Hp0(M,SF ) is isomorphic to H 0(Y,SF )

and Hp(M,SF ) = {0} for p �= p0. These results are obtained without the use of an action
of the torus of (M,ω). However, assuming that the k-dimensional tori for k ≤ p0 contained
in the leaves of F are orbits of a free action of the torus T k on (M,ω), our theory gives the
same result for the cohomology groups of degree at most p0 without assuming that F is
totally real. Therefore according to Śniatycki’s result, in the case that F is real the number
p0 in Theorem 4.2 is the rank of the fundamental group of the fibres of F . The vanishing
of the cohomology groups in degrees greater than p0 proved by Śniatycki seems to be a
special feature of only real polarizations. In this sense our results give a generalization of
Śniatycki’s theory in the case that F contains real directions which are tangent to the orbits
of a free torus action on M . Our discussion, however, does not show that similar conclusions
hold in the case that the strongly integrable polarization F has real directions, which are
tangent to a k-dimensional foliation of tori, the leaves of which are not necessarily orbits
of a torus action.

Another consequence is that if F is real, we can use Śniatycki’s vanishing theorem for the
cohomology groups of SF in degrees greater than k to conclude that under the assumptions
of Theorem 4.4 assumptions the induced sheaf on the integral reduced spaces does not have
cohomology in degrees greater than zero.

In the special case when k = n, i.e. when F is a real polarization the leaves of which
are the orbits of an n-dimensional torus acting on M our theory guarantees the vanishing of
the cohomology groups at degrees greater than k. This is because the quotient Z = Y/T k

is a discrete set of points and the induced sheaf on Z has cohomology only at degree zero.
Therefore by Theorem 4.4, the sheaf SF does not have cohomology at degrees greater than
k. Moreover, the dimension of Hk(M,SF ) for k = n is given by the number of points in Z.

Our results depend strongly on the assumption that the action of the torus is free. This
assumption excludes a lot of the interesting cases, like Hamiltonian torus actions on compact
symplectic manifolds, where we know that we must have more than one orbit types. In a
forthcoming paper, we are going to examine the same questions for quasi-free, Hamiltonian
actions of a torus T k on a symplectic manifold.
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